Jump to content

ND4SPD

Moderators
  • Posts

    14.190
  • Joined

  • Last visited

  • Days Won

    57

Everything posted by ND4SPD

  1. Imas Yokohamu AD08R u toj dimenziji... Ako zelis nesto drugo, imas Toyo R1R, samo sto taj R1R ima jako mekanu smjesu, pa se brzo trosi...
  2. Imao, probao... Nisam rekao da se uvijaju strasno, ali bocnica je recimo meksa nego na Yokohami AD08R... A da ne pricam o usporedbi sa recimo Dunlop Direzzom 03G... Cak bi rekao da su mekse nego na Bridgestone Potenzi RE050 i RE050A...
  3. Funnily enough, taj R888 ima poprilicno mekane bocnice...
  4. JOT moze biti i etnicka grupa u Afganistanu, programski jezik, JOTA/IOTA je deveto slovo grckog alfabeta, te u grckom sustavu biljezenja brojeva oznaka za 10, JOT moze biti TV serija, interval u muzici, Ganski glumac, ali kao mjerna jedinica ne postoji.
  5. O kojoj pricate... Staroj GS-D3 ili novoj Asymmetric 3? Kako sam vec napisao, meni je GY Eagle F1 GS-D3 bila najbolja kisna guma... Po suhome mi definitivno nije bila najbolja, imala je jako mekane bocnice, tako da se previse "uvijala", a nakon duze brze voznje imao sam osjecaj da se pocinje "topiti"... @Raptor6767 Rene je imao noviju, cini mi se Asymmetric 2 i imao je iste primjedbe na mekane bocnice...
  6. Koji GY F1? Imas bar pet razlicitih Meni je GY Eagle F1 GS-D3 bila najbolja kisna guma
  7. Nije samo na papiru, imao sam i pravi poluslick, i to vise vrsta, to je jos opasnije na kisi... Najveci problem je aquaplaning, ostalo je jos OK...
  8. Ja nemam, osim sto sam na kratko probao na Sasinoj Imprezi, ali to nije dovoljno za bilo kakve zakljucke... Serijski su dolazile na Imprezi STi... @Sasaa moze vise toga reci o toj gumi... Ta guma je poprilicno stara, postoje novije gume od Bridgestonea u toj klasi, Potenza RE-11 i jos novija, Potenza RE-71R, za koju kazu da je fantasticna... Koliko znam ne mogu se kupiti u EU... Postoji mogucnost da se RE070 vise ne proizvodi, tako da obavezno provjeri DOT prije nego sto kupis gumu... Ja trenutno imam Yokohamu ADVAN Neova AD08R, dakle R na kraju, novija verzija AD08... Osobno sam prezadovoljan, guma je odlicna, tvrde bocnice, osjecaj na volanu odlican... Nema takav grip kao pravi poluslick, ali nije niti jako daleko... Po kisi treba biti oprezniji, ali opet ne toliko kao sa pravim poluslickom... RE070 nije poluslick... To je hibrid izmedju UHP (Ultra High Performance Summer), MPS (Max Performance Summer) i poluslickova, imaju novi naziv za takve gume, EPS (Extreme Performance Summer)... Bridgestone poluslick je recimo Potenza RE55S, Potenza RE540S... Yokohamin poluslick je ADVAN Neova A048R, odnosno nova verzija A050R... Zaboravih napomenuti, @Branx ima odlicne cijene za tu Yokohamu...
  9. Rijeci ti se pozlatile...
  10. Jot kao mjerna jedinica ne postoji. Slovo J na njemačkom se jeziku izgovara kao JOT. J je dosjed felge na gumu, uz J postoje jos J, JJ, K, JK, B, P i D. Širina felge od npr. 7 (sedam) znači da je felga široka 7 (sedam) inča. Uz inč, često se koristi izraz col, što je također germanizam - Zoll. Uz brojku 7 (sedam) mogu stajati navodnici - ", što je također oznaka za inč, tako da npr. imamo felgu promjera 18" i širine 9".
  11. IMHO Hyundai je prosle godine imao najbolji auto, i Neuville imao sansu za naslov, ali je baksuz...
  12. To bi bilo fantasticno, bilo je i u najavi (imamo temo o tome tu na forumu), ali na zalost, nista od toga...
  13. Opet ova prica sa dyno mjerenjem? U par mjeseci se sve zaboravi ili sto? Biti cu pristojan, pa cu napisati da ne znam od kuda si izvukao 37% gubitaka za RWD BMW 316d... Evo napravio sam novi thread samo o tome, pa mozemo tamo nastaviti dalje:
  14. 1. Engine dynamometer, engine test stand, motorna kocnica, tu se mjeri snaga/moment na zamasnjaku ili radilici, to su sluzbeni SAE (Society of Automotive Engineers) podatci svih proizvodjaca... Vise izracunima prema kojima su dobiveni SAE standardi za izmjerenu snagu/moment mozete procitati ovdje: https://wahiduddin.net/calc/cf.htm https://www.dynomitedynamometer.com/dyno-tech-talk/corrected-horsepower.htm 2. Chassis dynamometer (rolling road), tu se mjeri snaga na kotacima ili glavcini (hub dyno), gdje se izmjerena snaga uz predefinirane izracune i korekcije pretvara u snagu na radilici, gdje postoje razlike od valjaka do valjaka... O problemu konverzije, odnosno izracuna snage sa kotaca na radilicu mozete procitati dolje na linku, citirati cu najzanimljiviji dio: Dobeck got his start tuning English sports cars in a Portland, Oregon, garage in the late ’70s. He had hot-rodded the shop’s Sun infrared exhaust analyzer to improve response time and became a wiz at using exhaust-gas carbon monoxide to optimize power on the go. The trouble came later when he moved on in 1980 to open a motorcycle shop in Wisconsin. Cars were one thing, but there was no way to haul a gas analyzer as big as a TV set on a motorcycle. So Dobeck talked his inventor/fabricator father into building a stationary rolling-road that could support the rear wheel of a motorcycle on a moving drum so he could continue tuning while “driving” with the big infrared analyzer. The rolling road was designed with a hydraulic system that could be adjusted to work a bike engine harder at a given speed, something like the resistance controls on a Stairmaster machine. But because Dobeck and his dad were mechanics rather than mathematicians, they made the rolling drum heavy, and the homebuilt dyno had a surprising amount of inertia. It was accidentally pretty good at simulating a motorcycle’s ability to accelerate. Dobeck’s new bike shop opened just in time for the arrival of Japanese superbikes equipped with constant velocity (CV) carbs, which were new to motorcycling. CV carbs provided good performance, economy, and emissions, but they could not be tuned and jetted using traditional methods. Many people recommended replacing them, a $600 solution. But Dobeck understood CV carbs from the days of wrenching on English cars and modified them to allow the new motorcycles to run with performance pipes and air cleaners. Before long, bikers were traveling from all over the upper Midwest for Dobeck’s dyno-jetting service. Meanwhile, in the evenings, Dobeck read magazine stories of hot rod bikes running exhaust-system shootouts on the torque-cell dynos of famous California super tuners. Performance magazines loved dynamometers because they brought science to hot rodding. But torque-cell dynos, which load an engine by forcing it to pump water or generate electricity, are expensive, and using them has often required removing the engine from the vehicle. “I started to realize I was doing something that no one else was doing,” says Dobeck, who was using his homebuilt inertial dyno to tune bikes with the goal of improving acceleration and responsiveness. “Eventually I built a few jet kits to see what we could do with them.” Dobeck named his company Dynojet. His first big customer was K&N Filters, and it wasn’t long before he was selling lots of jet kits. His company grew at a rapid pace, and sure enough, a competitor sprang up with a similar product. “Their advertising was working,” Dobeck says. “They were taking away sales. But the product didn’t work. Not at all.” To prove it, he called several of the top engine-dyno suppliers to see if they would help him develop an affordable version of his homebuilt inertial chassis dyno that could live in the shops of Dynojet dealers to show the world what worked and exactly how well. “Every one of them laughed at me,” Dobeck remembers. One of the biggest headaches of Dynojet’s go-it-alone chassis-dyno project was figuring out how to assign meaningful power numbers in the face of unknown inertia from the moving parts of the hundreds or thousands of engine, drivetrain, and tire combinations. Wrestling to fully understand inertia and powertrain losses, Dobeck and his team quickly realized that the standard physics formula of weight, time, and distance for converting acceleration into horsepower simply didn’t work-the derived number was always lower than accepted numbers. They poured on resources and burned up time and money investigating it, but no matter what they did, the math never added up. Dynojet’s final number-fudge was arbitrarily based on a number from the most powerful road-going motorcycle of the time, the ’85 1,200cc Yamaha VMax. The VMax had 145 advertised factory horsepower, which was far above the raw 90hp number spit out by the formula. Meanwhile, existing aftermarket torque-cell engine dynamometers delivered numbers that clustered around 120. Always a pragmatist, Dobeck finally ordered his Chief Engineer to doctor the math so that the Dynojet 100 measured 120 hp for a stock VMax. And that was that: For once and forever, the power of everything else in the world would be relative to the ’85 Yamaha VMax and a fudged imaginary number. Dobeck’s engineering staff was dismayed by the decision, but the Dynojet 100 exclusively measured surplus power available to accelerate the vehicle’s mass-no more, no less-and that was true even if the modification was a low-inertia flywheel or lightweight wheels. As long as the inertial dyno’s numbers were repeatable, the critical question (did a particular modification make the engine accelerate faster or slower?) would be answered correctly. Vjerujem da su se u zadnjih 10 godina stvari po tom pitanju popravile, te da je preracunata snaga na radilici jos tocnija onoj koja bi bila izmjerena na pravoj motornoj kocnici, iako postoje razni nacini mjerenja na chassis dyno-u, te postoje odstupanja od jednog proizvodjaca valjaka do drugih, neki su poznati da prikazuju malo, drugi da prikazuju vise... Dolazimo do toga da je primarna namjena tih valjaka tuniranje ECU-a na njima, a ne prikaz snage... Ako se dobro sjecam, netko je mjerio gubitke za Lancer EVO, cini mi se englezi na lancerregisteru, ali ne da mi se sada traziti link... Dakle stavili su motor na motornu kocnicu, pa na valjke, ako me pamcenje dobro sluzi chasis dyno je bio od Dyno Dynamicsa, a izmjereni gubitci 24%... U tu brojku nisu ukljuceni gubitci u valjcima koji su predefinirani od strane proizvodjaca valjaka... Nekakav medijan koji se spominje kod Lancera EVO je 20-25% gubitaka... Lancer EVO je AWD automobil sa permanentnim AWD pogonom i tri blokade diferencijala... Postoji vise razloga tzv. parazitskih gubitaka i svi su medjusobno povezani... Dakle, gubitci mogu biti zbog frikcije, uslijed kontakta dijelova, frikcije sa uljem, te gubitka inercije zbog tezine rotirajucih dijelova, a na to se pridodaju i gubitci u mjenjacu, koji se ne mogu izmjeriti coast down metodom mjerenja na chasis dyno-u... Isto tako, ti gubitci od 24% vrijede samo za Lancer EVO i to za odredjenu generaciju Lancera EVO, te se ne mogu primijenjivati na druge modele automobila... Jedan dobar clanak o tome: Drivetrain Power Loss - The 15% "Rule" Can You Apply A Universal Power Loss Percentage To All Drivetrains? Drivetrain loss is a common topic of conversation in the tuner world because any time you strap your car to a chassis dyno, the output being measured is at the wheel, not at the crank like the published SAE net horsepower figures used by the auto industry. Strap your 298-bhp RevUp G35 Coupe to the dyno and you may be disappointed to see little more than 220-230 horses measured at the rear wheels. Where did that 60-plus horsepower go missing? It was used up in a variety of ways before it could reach the drive wheels, the primary source being what's broadly described as drivetrain loss. What's interesting about this example is that when you do the math you'll see that the percent loss is much higher than the 15 percent "rule" you'll find in any number of online threads on the subject. For whatever reason, drivetrain loss seems to be one of the most poorly understood subjects discussed on online car forums, so despite my love of the Internet and the limitless pornography it makes available to me, when it comes to a fairly technical subject like this it's hard to find good information. A few years ago, I needed to educate myself on drivetrain losses while heading a rulebook committee for a local racing series that wanted to use dyno tests to measure engine output and then convert the results to net horsepower. After fruitlessly Googling and sifting through endless car forum threads polluted with half-truths and misinformation, I turned to the same source that developed the current manufacturer horsepower standard, the Society of Automobile Engineers (SAE). On its website you can access brief summaries of technical papers published by some of the world's leading automotive engineers and download the complete documents for a relatively small fee (usually less than $10 per article). As luck would have it, in 2002 the SAE held a symposium on transmission and driveline systems, and the papers that came out of it covered drivetrain loss in great detail. One of the first things I learned from reading these papers was to completely disregard the 15 percent drivetrain loss "rule" (or any other percent value) that so often comes up during online discussions of whp versus net horsepower. The fact of the matter is every vehicle experiences different levels of drivetrain loss as determined by the design of its transmission and driveline components. Simply put, the amount of horsepower lost to the forces of inertia, drag, windage, pumping and friction are different for every engine, transmission and driveline design. So the total power lost between combustion and forward motion is specific to each vehicle and therefore no single rule, percentage or fixed number, could possibly apply to all vehicles. Even on the most superficial level, this is easy enough to understand because an all-wheel-drive Subaru obviously has a lot more driveline components to spin (front, middle and rear differentials along with front and rear driveshafts and two prop shafts) and a beefier transmission to hold all that turbocharged torque, so it's naturally going to suffer from greater drivetrain losses than a Honda Fit with its much smaller and less robust transmission, smaller and lighter driveshafts (and no prop shaft) and single differential. Breaking down the different types of losses that occur within a vehicle's drivetrain, steady-state losses occur while the vehicle is cruising at a steady or constant speed, where average angular acceleration is zero because no additional torque is being called upon to accelerate the drivetrain's rotational mass. Within the drivetrain, steady-state power losses occur from the following components: the transmission torque converter (in the case of automatic transmissions), the transmission oil pump, clutch pack drag, one-way clutch drag, seal and bearing drag, gear windage and friction, and final drive losses. Dynamic drivetrain losses, on the other hand, include the rotational inertial losses from angular acceleration occurring within the drivetrain while accelerating. In fact, during acceleration there are losses from the rotational inertia of spinning transmission and differential internals as well as driveline components like driveshafts and prop shafts, but also from the increased load and friction being generated between the gears within the transmission and differential(s). And as you already know, with increased friction comes increased heat (more on that later) It's important to understand the difference between steady-state and dynamic losses because SAE net horsepower, as reported by the auto industry, is measured in a steady-state condition. What this means is that the horsepower rating for your vehicle doesn't take into account dynamic losses that occur during acceleration. However, when you strap your car to a chassis dyno to measure its engine's output, the test is conducted at wide-open throttle and power is measured by the speed at which the dyno's rollers are accelerated. This means that drivetrain losses from rotational inertia and increasing friction, drag and windage are at work and will reduce the peak horsepower reading at the wheels. Within the drivetrain itself, the primary loss sources are the differential and final drive, with further losses stemming from within the transmission, and in the case of AWD vehicles, from the transfer case. Within the transmission, as much as 30 to 40 percent of power loss can be attributed to the pump, with the clutch contributing another 20 to 25 percent. The rest of the loss within the transmission comes from seal drag, gear meshing, bearings, bushings and windage (drag on the gears caused by the gear oil). However, when dyno testing in the direct drive (1:1) gear, power is delivered directly through the mainshaft of the transmission, so the only loss sources are windage, friction and drag, resulting in total at-the-wheel losses as low as 1.5 to 2 percent, according to the published data. Differential losses tend to be considerably larger, especially in the case of RWD and AWD vehicles where the torque path is turned 90 degrees as it enters the rear diff and exits it toward the rear wheels. In the case of hypoid-type gearsets (where the gear tooth profile is both curved and oblique) that are commonly used in RWD differentials, losses in the 6 to 10 percent range are the norm, while loss from the driveshaft(s) and prop shaft(s) tend to account for about 0.5 to 1 percent of total loss, depending on how well they're balanced and how many the vehicle is equipped with. In the case of FWD vehicles, the torque path is more direct to the front wheels and the use of efficient helical final drive gears means that drivetrain losses can be as much as 50 percent lower than on RWD and AWD vehicles. In any drivetrain component with meshing gearsets, heat generated by contact friction between the gears is a significant contributor to drivetrain loss. This is true during steady-state driving, but is far more of an issue when the throttle is mashed to the floor and the resulting thrust force and angular acceleration builds up in these drivetrain components. The heat generated by this dynamic friction is absorbed by the transmission and differential fluid as well as radiated to the atmosphere through the transmission and differential housing(s), and in some cases, via a heat exchanger or oil cooler. This absorbed and radiated heat is literally the conversion of engine torque into thermal energy because you can't technically "lose" power, but can only convert it into other things (some of our favorites being forward motion and tire smoke). It's also worth noting that the more powerful you make your engine, the greater the thrust force and angular acceleration it's able to exert on the drivetrain, generating even more friction and heat in the process. But because both steady-state and dynamic friction vary depending on engine speed, engine load and the efficiency of the engine and drivetrain's design (how well they limit friction and the associated thermal conversion of torque to heat), there's no way to apply a universal percent loss to it. Nor is it possible to apply a fixed drivetrain loss figure to your car (say 60 whp from my RevUp G35 example), because as you modify the engine and increase its output its ability to generate thrust force and angular acceleration also increases (though not in a linear fashion). In the end, there's no easy way to estimate the drivetrain loss your vehicle experiences on the road or even on the dyno. Coast-down tests are sometimes used on a dyno to attempt to measure frictional losses, but because this test is not dynamic (meaning they're not done while accelerating, but rather while coasting to a stop with the direct drive gear engaged but the clutch depressed so that the engine and transmission aren't linked) it really only captures steady-state drivetrain losses as well as rolling resistance. So rather than attempting to convert your vehicle's dyno-measured wheel horsepower to a SAE net horsepower figure using a percentage or a fixed horsepower value, you're far better off accepting the fact that these two types of horsepower measurements aren't easily correlated and forego any attempt at doing so.
  15. Detaljnije imate ovdje: https://www.redbull.tv/video/AP-1TQGNZF9S1W11/recap-monte-carlo-day-1 Ma vec na petom brzincu je imao skoro minutu prednosti... Izgleda da je Ogier klasa iznad svih, kao sto je Loeb bio, te da mu je imenjak legitiman nasljednik...
  16. Sorry @Dottore nisam ni otvarao link, sad tek vidim da su u linku iste slike koje sam stavio
  17. Poznata stvar, pogresan dizajn, prvenstveno dihtunga (od nedavno su ga promijenili) i bloka... Focus RS Head Gasket Failure Mechanism A lot has been made of the Focus RS Ecoboost 2.3 head gasket failures. It seems to be an issue that has occurred in both modified and unmodified vehicles. I am not certain what percentage of vehicles are affected. However we have spent significant time looking at the mechanics of the failure and wanted to share this with our customers and community. The Focus RS uses a multi layer steel (MLS) head gasket. This is a very capable method for sealing the block to head interface. This multilayer gasket is enhanced by an elastomer that further helps seal critical areas. The Focus RS 2.3 Ecoboost engine block is an open deck design. This means that the cylinders are not attached to the outside of the block structure at the sealing surface of the head gasket. This space is filled with engine coolant. The head and block are secured to each other using torque to yield bolts (which do not require re-torquing the head fasteners after the engine is heat cycled). In spite of this there is inevitable movement between the two sealing surfaces. The two types of movement are vertical movement (which is what causes head lift and a sudden gasket failure) as well as lateral movement. This lateral movement is of most interest in this situation. Minute lateral movement causes what is called gasket fretting/scrubbing. There are two mechanisms that cause this lateral movement: 1. Thermal deformation. As the engine is brought through a range of temperatures (within normal operation), the expansion and contraction of the head and block cause this lateral movement between the two interfaces. The movement caused by this is however low cycle, as the engine is warmed up and cooled down relatively few times compared to the next mechanism. 2. The most relevant mechanism for lateral movement is due to cylinder firing. When a cylinder fires, it applies pressure on the open deck cylinder structure. This in turn causes this minute movement between the two interfaces scrubbing them at a high rate. The result of this scrubbing is material loss from the head gasket, block, or head. Over time, the seal between the block and head can fail. The area where it will fail first is the area with: the highest movement, the highest contact pressure, and the least sealing material available. The area of highest lateral movement for the Focus RS is between the cylinders. The area of highest contact pressure is around the cylinders (because this is where the combustion pressure is highest and needs the best seal). This is by design. The area that will inevitably experience the highest wear rate will be between the cylinders. Manufacturing discrepancies, vehicle use, temperature fluctuations and other factors will influence whether a failure will occur on a vehicle and if so when. There are two methods to reduce this scrubbing wear. One is to stiffen the block structure. When rebuilding an engine for example, using the closed deck 2.0 Ecoboost block is an attractive option. However, Ford could not use this block in production and I am certain there are good reasons for this; likely related to emissions certification. The second method, and what is being implemented as a fix is to redesign the head gasket. Below is an image of a failed Focus RS gasket. A few things to note: There is a very high wear rate of the elastomer (black section) between the cylinders. This is where the gasket has failed. You can see that it is almost completely missing in these areas. Notice how thin the sealing area is between the cylinder overall. Looking carefully you will notice that the are two holes in gasket between the cylinders marked on the image below. Now let’s have a look at the block. You can see there is a very smallcoolant hole on the exhaust side. This hole lines up with one of the holes in the failed head gasket. You can also see a trail of coolant marking on the block surface leading to the second hole. This shows there is no elastomer between the cylinders on the original head gasket. Looking at the head, you can see that the first hole on the head gasket lines up with a coolant passage. The second hole, however does not line up with any coolant passage. Once again, the head shows that coolant was found in the area between the cylinders but this was a closed path. Overall the cylinder sealing area was very narrow and the head gasket failed after a number of miles. When the car was brought to the dealer, it was repaired with the head gasket shown below. There are some very important changes in the area between the two cylinders on the updated gasket. The second deadheaded hole is no longer present The entire area between the cylinders is now coated in elastomer. This will increase the sealing surface area and better distribute the clamping force in this critical area. This will in turn reduce the fretting/scrubbing failure of the head gasket. The latest gasket part number is G1FZ-6051-C and this is what dealers are replacing failed gaskets with on vehicles that experience this failure. I am not sure at what point the factory engines have received this latest gasket part number. The only indication I was given was that this part number was available to service centers sometime between 3/27/17 and 8/10/17. Again, this says nothing regarding when this change was made to vehicles coming out of the factory. I hope this clears up some of the confusion around these head gasket failures and what is causing them. The symptoms of failure are: Loss of coolant. Misfires, especially on a cold start and rough running. Coolant fouled/wet spark plugs. If you experience these symptoms, take the car in to Ford for the fix. Otherwise, enjoy the RS! It is not the only car in history to experience difficulties with head to block sealing. High output, low emissions, small displacement engines like the RS are a challenge to engineer and can have some teething issues; but at the same time we can all agree that fun behind the wheel was certainly well engineered! http://stratifiedauto.com/blog/focus-rs-head-gasket-failure-mechanism/ Uz taj dio, zanimljivo je vidjeti u kojem se sve slucaju ne priznaje garancija: https://ford.oemdtc.com/GSB/G0000128.pdf Uz sve to, vec sada straznji GKN Twinster LSD zovu - "glass diff"...
  18. Bas da kopiram sa jednog drugog foruma, dakle C/P necijeg posta: Projekt je vrijedan 9,5 milijuna kuna, - uzet kredit od 7 milijuna i vlastitih 2,5 milijuna kuna - desetogodišnji prihod 105 milijuna kuna baš me zanima bilanca i račun dobiti i gubitka sa ovakvim prihodima su mogli biti dobro likvidni i ne bi im trebao kredit, kaže investirali samo 27 mil kuna u 10 god, ali u šta točno? hladni pogon ... koliko je ljudi zaposleno na stazi? smrdi mi da se tamo opako pere lova klasicna hrvatska prica, tudjim kurcem mlate po plotu da je to privatna staza, odavno bi imala i posteni asfalt, tribine, boxeve i svu potrebnu infrastrukturu ... jer u 25 godina koliko stazom upravljaju, ocito su prihodi znatno iznad 105 milja kuna ... a ulozili su lipov kurac
  19. Znam da je isti tekst, ali novi list mi je relevantniji izvor Uostalom asfalt je najavljivan vec vise puta, ako se opet ne ostvari, a clanci "slucajno" nestanu imamo dokaz barem na forumu
  20. Za obnovu Automotodroma Grobnik 9,5 milijuna kuna: Legendarna pista zasjat će u novom ruhu U ponedjeljak, 4. prosinca, počinju radovi na rekonstrukciji Automotodroma Grobnik. Projekt je vrijedan 9,5 milijuna kuna, za koji je Automotodrom osigurao kompletno financiranje – namjenski kredit kod Privredne banke u iznosu od sedam milijuna kuna i vlastitih 2,5 milijuna kuna – najavio je direktor Automotodroma Grobnik, Zdenko Šantić, na tematskoj sjednici Općinskog vijeća Čavle. Šantić je za 10. prosinca najavio i potpisivanje ugovora s izvođačima radova, njih šest te kazao kako će radovi biti završeni najkasnije do 25. ožujka sljedeće godine, a provodit će se u sedam faza. – Prvih pet faza ne ovisi o vremenskim uvjetima i one će biti realizirane do 20. veljače sljedeće godine, a posljednje dvije faze, koje obuhvaćaju polaganje novog asfalta, potrajat će još mjesec dana. Naime, za asfaltiranje su potrebni posebni vremenski uvjeti za što smo angažirali i Državni hidrometeorološki zavod, koji će nas tjedno, a pred kraj radova i dnevno informirati o vremenskoj prognozi. Kompletnu tehničku dokumentaciju potrebnu za radove i za provedbu natječaja izradila je tvrtka Rijekaprojekt iz Rijeke, a angažiran je i talijanski konzultant – kazao je Šantić. Prema sadašnjem planu, moglo se čuti, novi asfalt bi u svakom slučaju trebao biti postavljen prije roka kada je najavljen dolazak predstavnika Tehničke komisije FIM-e za izdavanje novih licenci za pistu. Puno pitanja U dvosatnoj raspravi na ovu temu sudjelovali su svi vijećnici, pa je Stanislava Žeželića (HDZ) zanimalo tko je dobavljač asfalta, Rajnu Broznić (ARS) naplata kredita i sredstva tekućeg održavanja, Edu Žeželića (HSLS) što je s »go kart« stazom, dok je Goran Mavrinac (AM) istaknuo razmatranje mogućnosti otvorenja javnog međunarodnog natječaja kako bi Automotodrom u budućnosti imao priliku za veće investicije i ulaganja. SDP-ovac Mirko Vukelić kazao je kako je zadovoljan sportskim sadržajima na Automotodromu, ali ne i dinamikom ulaganja, a njegov stranački kolega Alen Knežević kako treba čim prije riješiti manjak komunikacije između Automotodroma i Općine Čavle. Također, Kneževića je zanimalo i koje će nove licence Automotodrom dobiti nakon sanacije staze. PGS-ovka Đurđica Fućak zatražila je od Uprave Automotodroma dinamiku rada, odnosno koliko je mjeseci u godini Automotodrom u funkciji, SDP-ovca Marka Žuvića zanimalo je zašto se toliko dugo čekalo na projekt obnove asfalta, posebice kada se javila opasnost gubljenja licenci, a Aljošu Žeželića iz Unije Kvarnera »nesrazmjer između planiranih i ostvarenih stavki«, pa je, kako je kazao, plan i dva do tri puta veći od realizacije i to nekoliko godina za redom. Sandra Mohorić (SDP) kazala je kako je Automotodrom za Općinu Čavle jako bitan te kako u četiri godine koliko je mandat Vijeća nije dostavljeno materijala o radu i planovima koliko za ovu sjednicu. PGS-ovac Marko Sobotinčić kritizirao je Upravu Automotodroma što je, prema njegovim riječima, u 10 godina uprihodovala 150 milijuna kuna, a u istom vremenskom razdoblju u Automotodrom uložila svega 27 milijuna kuna. Nezadovoljni upravom – Općina Čavle u mnogočemu vam je išla na ruku, pa se s pravom pitamo je li dosadašnji model upravljanja ispravan, kazao je Sobotinčić. Na vijećničke upite odgovorio je direktor Šantić, koji je kazao kako je za nabavku i miješanje asfalta izabran GP Krk. Sa sanacijom asfalta čekalo se dugo, pojasnio je, jer je tek prije nekoliko godina objekt legaliziran, a realizacijom ovog projekta dobit će se kvalitetnije licence što se tiče automobila, ali se s motorima neće ići na više, nego na ishodovanje postojećih licenci, a sve će se lakše ishodovati. Odgovarajući vijećniku Sobotinčiću, Šantić je kazao kako je desetogodišnji prihod Automotodroma 50 milijuna kuna manji nego ga je on predstavio, odnosno iznosi najviše 105 milijuna kuna. Dodao je kako je zbog vremenskih prilika na Grobniku Automotodrom u funkciji osam mjeseci u godini, dok se za četiri mjeseca mirovanja plaća hladni pogon. U raspravu se uključila i načelnica Ivana Cvitan Polić (SDP), koja je negirala izjave čelnika Automotodroma kako Općina Čavle malo ili ništa ulaže u ovaj objekt. – To nije istina, na svaki vaš upit odgovorili smo pozitivno – kazala je Cvitan Polić, dodajući kako je Općini Čavle Automotodrom kao pokretač razvoja gospodarstva i turizma veoma važan, što se vidi po tome kako je putem Urbane aglomeracije Rijeka osigurano 550 tisuća eura za realizaciju multimedijalnog postava na Automotodromu i energetsku obnovu zgrada, dok se od projekta start-upa odustalo jer je ponuđen prostor koji veličinom ne zadovoljava. Raspravu je zaključio predsjednik Vijeća Norbert Mavrinac (Unija Kvarnera), koji je kazao kako je očito da dosadašnji način upravljanja nije dao zadovoljavajuće rezultate niti je ostvareno ono što je obećano te kako je potrebno organizirati zajednički sastanak između Automotodroma, Općine Čavle i Primorsko-goranske županije. – Vijeće podržava načelnicu Ivanu Cvitan Polić i njezinu upravu u svim dosadašnjim i budućim radnjama, posebice u sastavljanju ankesa ugovora iz 2002. i 2011. godine u kojem će osnova biti definiranje prava i obveza sa strane Općine Čavle kao najmodavca i MK Kvarner kao najmoprimca – kazao je Mavrinac. Bit će jedna od najljepših staza na svijetu Šantić je podsjetio da su radovi trebali početi sredinom ljeta ove godine, čak je od 17. srpnja staza bila zatvorena za dnevnu upotrebu, ali onda su odogođeni. – Izabrani izvođač radova nije, naime, dao valjano jamstvo da će radove završiti prema rokovima dogovorenim u tenderu, već je iste produljio do sredine rujna, što bi značilo otkazivanje značajnih manifestacija, na što u tvrtki koja upravlja Automotodromom nisu mogli pristati – pojasnio Šantić. Motociklistička staza na Grobniku zaživjela je sredinom rujna 1978., tada u svijetu najnovija i za okvire tadašnje države jedina i jedinstvena te je i danas, 39 godina kasnije, jedini asfaltirani sportski objekt u Hrvatskoj na kojem su se odvijale najznačajnije svjetske motociklističke i brojne međunarodne automobilističke manifestacije na kružnim stazama. Svih proteklih godina nije mijenjana asfaltna površina, a godinama se najavljivala zamjena novim slojem, što je početkom ove godine konačno i službeno potvrđeno. Tako će »grobnička ljepotica« četrdeseti rođendan sljedeće godine ipak dočekati u novom ruhu – s novim asfaltom. U Automotodromu su u uvjerenju kako će i nakon završnog projekta to ostati jedna od najljepših staza na svijetu. http://www.novilist.hr/novilist_public/Vijesti/Rijeka/Za-obnovu-Automotodroma-Grobnik-9-5-milijuna-kuna-Legendarna-pista-zasjat-ce-u-novom-ruhu
×
×
  • Create New...